Affinity Plus qPCR Probes

Increase SNP target specificity and use shorter sequences with these high affinity probes

Use qPCR probes with greater structural stability

When performing qPCR-based SNP analysis, your experiments will always benefit from use of probes with increased hybridization specificity and enhanced discrimination. Affinity Plus qPCR Probes are custom probes you design. They include up to 6 locked nucleic acid nucleotides (Figure 1), which impart heightened structural duplex stability to the probes.

Obtain enhanced probe stability, plus ability to modulate T_m

In comparison to unmodified probe sequences, the higher melting temperature of the locked nucleic acid–containing Affinity Plus qPCR Probes provides better stability in qPCR assays, especially with target regions of low GC content. Affinity Plus qPCR Probes have identical annealing properties leading to the same increased sensitivity as other manufacturers’ locked nucleic acid qPCR probes, such as LNA® (Qiagen) probes (Figure 2). Furthermore, you can modulate probe T_m by the number of Affinity Plus nucleotides you include. Modulating T_m allows you to adjust and shorten probe length. The shorter the probe, the higher the impact of the mismatch on probe duplex stability and mismatch discrimination.

Figure 1. A locked nucleic acid monomer. These modified nucleotides contain a methylene bridge (orange) between the 2’ oxygen and the 4’ carbon of the pentose ring. The bridge fixes the pentose ring in the 3’-endo conformation.

Figure 2. Sequences containing Affinity Plus locked nucleic acids show identical annealing properties to those from another manufacturer. The 15-mer sequence, GGTCCT+T+A+CTTGGTG, was synthesized with either Affinity Plus or LNA locked nucleic acid modifications incorporated at the +T, +A, and +C sites. These oligos were mixed with the complementary DNA strand (1 μM each strand) in 1 M Na+ buffer (pH 7). Melt curves were performed as described in Owczarzy, et al., Biochemistry (2004), 43:3537–3554. The percentages of duplex melted base pairs are plotted as a function of temperature. The plots of duplex melted base pairs were averaged from at least 7 heating and cooling melting curves. Melting temperature was measured to be 67.7±0.3°C for the Affinity Plus oligo and 67.9±0.3°C for the LNA oligo. Free energy of duplex hybridization at 37°C was determined to be –18.1±0.9 kcal/mol for the Affinity Plus oligo and –18.7±0.9 kcal/mol for the LNA oligo. These results demonstrate the identical annealing properties of both manufacturers’ locked nucleic acid sequences.

Discover more at www.idtdna.com/AffinityProbes

www.idtdna.com

custom oligos • qPCR • next generation sequencing • RNAi • genes & gene fragments • CRISPR genome editing
Figure 3 compares cluster plots resulting from assay sequences with Affinity Plus or LNA locked nucleic acid probes.

Figure 3. Affinity Plus qPCR Probes generate identical genotyping calls as PrimeTime LNA Probes. Genotyping assays (n = 4) were run using 46 unique Coriell gDNA samples and the same probe sequences made as either Affinity Plus qPCR Probes or PrimeTime LNA qPCR Probes. There were no differences in calls observed between Affinity Plus and LNA probes. All genotype calls matched previous results (data not shown). The sequences of the primers and probes are listed in Table 1 of the Performance tab on the Affinity Plus qPCR Probes webpage. All but rs1333049 are ADME (absorption, distribution, metabolism and excretion) assays.

More affordable locked nucleic acid probes

Affinity Plus qPCR Probes give you a cost-effective alternative to other locked nucleic acid probes, while providing a wide selection of formats, dyes & quenchers, and customization.

Ordering information

Affinity Plus qPCR Probes are available for screening small sample sets or for performing just a few reactions when optimizing probe designs. The mini size delivers 0.5 nmol of probe with a selection of 3 reporter dyes and a single quencher. See the table below.

Affinity Plus qPCR Probes are also available in 250 nmol and 1 µmol synthesis scales, best suited for large-scale or high-throughput applications. They come with a wider selection of dyes and quenchers. See the table below.

<table>
<thead>
<tr>
<th>Product</th>
<th>Delivery</th>
<th>5’ Reporter dye</th>
<th>3’ Quencher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini Affinity Plus qPCR Probes</td>
<td>0.5 nmol</td>
<td>6-FAM, HEX, Yakima Yellow®</td>
<td>Iowa Black FQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-FAM, HEX</td>
<td>Iowa Black FQ or Black Hole Quencher® 1</td>
</tr>
<tr>
<td>Affinity Plus qPCR Probes</td>
<td>250 nmol, 1 µmol</td>
<td>Cy® 3, Cy 5, TEX™ 615, TYE™ 563, TYE 665</td>
<td>Iowa Black RQ-Sp or Black Hole Quencher 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yakima Yellow</td>
<td>Iowa Black FQ</td>
</tr>
</tbody>
</table>

Black Hole Quencher is a registered trademark of and licensed from Biosearch Technologies, Inc.

Cy is a registered trademark of and licensed from Amersham under 5,556,959 and 5,808,044, for RUO; now a registered trademark of GE HealthCare.

TEX and TYE are trademarks of and licensed from Thermo Fisher Scientific (Milwaukee) LLC.

Yakima Yellow is a registered trademark of Elitech Group and the respective modifications are sold under a licensing agreement with Elitech Group for use in any application, including without limitation, all commercial and diagnostic applications.

For more information and to order, visit www.idtdna.com/AffinityProbes.